首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   19篇
  国内免费   42篇
系统科学   1篇
丛书文集   13篇
教育与普及   6篇
理论与方法论   3篇
现状及发展   4篇
综合类   382篇
  2023年   2篇
  2022年   7篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   8篇
  2017年   10篇
  2016年   8篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   44篇
  2011年   40篇
  2010年   26篇
  2009年   32篇
  2008年   20篇
  2007年   41篇
  2006年   26篇
  2005年   31篇
  2004年   17篇
  2003年   11篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1987年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
71.
多壁碳纳米管修饰丝印电极的制备及在尿酸测定中的应用   总被引:2,自引:1,他引:1  
利用丝网印刷技术制作一次性使用的丝印碳糊电极,采用吸附法将羧基化的多壁碳纳米管修饰在电极表面,建立测定尿酸的简单快捷的电化学分析方法.将该法用于全血尿酸的测定,在pH7.4的磷酸盐缓冲溶液中,测定尿酸的伏安行为,多壁碳修饰电极比裸电极具有更好的选择性和更高的灵敏度.差示脉冲伏安法测得尿酸浓度在2~100μmol/L范围内,峰电流值与浓度呈线性,相关系数为0.9979,检测限为1.0μmol/L.在全血样本中,加入0~0.4 mmol/L的尿酸溶液,线性相关系数为0.9975.该方法简单、快速,电极制作成本低,所需仪器简单,样品不需预处理,用于全血尿酸的测定结果满意,可作为一次性测试条使用,为尿酸检测走入小型化、家庭化提供了实验基础.  相似文献   
72.
采用水热的方法,将纳米SnO2负载在多壁碳纳米管(CNTs)表面,制备得到SnO2负载多壁碳纳米管复合材料(SnO2/CNTs)。通过X射线衍射(XRD)和扫描电子显微镜(SEM)研究了不同反应条件对产物形貌的影响。结果表明,通过改变溶液的浓度可以控制SnO2/CNTs纳米复合材料的形貌。  相似文献   
73.
研究制备了苝酰亚胺——手性表面活性剂复合物N,N′-双(2-(季铵基乙撑))-3,4,9,10-苝二酰亚胺-双((3R)-3,7-二甲基辛基-6-乙烯基)磷酸盐,详细研究了其在乙醇/正己烷,乙醇/正辛烷溶液中的自组装行为及组装机理。结果表明,该复合物在乙醇/正己烷溶液中组装为纳米管,在乙醇/正辛烷溶液中组装为纳米带。对其组装机理研究表明,该分子在溶液中组装为不同形态的纳米结构是π-π相互作用,疏水作用及手性诱导等多种作用力协同作用的结果.  相似文献   
74.
碳纳米管和苯、萘、蒽通过非键相互作用形成复合物。对碳纳米管与苯、萘、蒽相互作用的不同取向进行了研究,构建了PA、PB、TA和TB四种模型,应用PBE密度泛函方法,在DZP水平下对碳纳米管CNT200和苯、萘、蒽进行几何结构优化。计算结果表明PB构型相对最稳定,其相互作用能△E_(int)分别为-7.62、-10.78、-14.46kcal/mol,作用距离分别为3.30(?)、3.46(?)和3.46(?)。计算结果表明碳纳米管可以有效的吸附苯、萘和蒽。  相似文献   
75.
碳纳米管是国际材料科学的前沿领域之一,研究成果不断涌现,这些研究成果主要以研究论文和专利的形式出现。随着近年来中国科研实力的提升,中国科学家在碳纳米管研究领域也取得了相当突出的成绩,影响力越来越大。利用Web of Science和Derwent Aureka对2000—2009年碳纳米管相关的论文及专利进行检索分析,对我国碳纳米管领域的研发能力进行了评估。  相似文献   
76.
在稳定运行压力条件下,对水基多壁碳纳米管(MWNT)悬浮液为工质的水平轴向微槽道热管换热特性进行实验分析.结果表明:由水基MWNT替代去离子水后,热管性能得到改善,壁面平均温度明显下降;微槽道热管的蒸发换热系数最大提高80%;最大热流密度提高25%;热管总热阻下降了50%左右.运行压力对热管换热性能有明显影响,压力越小,MWNT悬浮液对换热特性的强化作用越显著.热管热阻和最大换热能力均随MWNT浓度的增加而提高,而当MWNT浓度增加到一定值后又随之下降,最佳浓度在2.0%左右.  相似文献   
77.
Raman spectroscopy has been widely used to identify the physical properties of carbon nanotubes (CNTs), and to assess their func-tionalization as well as orientation. Recently, Raman spectroscopy has become a powerful tool to characterize the interfacial properties between CNTs and polymer matrices. This review provides an overview of micro-Raman spectroscopy of CNTs and its application in studying CNT reinforced polymer composites. Based on the specific Raman band shifts relating to the mechanical deformation of CNTs, Raman scattering can be used to evaluate the interactions between the CNTs and the surrounding polymer in the composites, and to detect the phase transitions of the polymer, and investigate the local stress state as well as the Young’s modulus of the CNTs. Moreover, we also review the current progress of Raman spectroscopy in various CNT macroarchitectures (such as films, fibers as well as composite fibers). The microscale structural deformation of CNT macroarchitectures and strain transfer factors from macroscale architectures to microscale structures are inferred. Based on an in situ Raman-tensile test, we further predict the Young’s modulus of the CNT macroarchitectures and reveal the dominating factors affecting the mechanical performances of the CNT macroarchitectures  相似文献   
78.
卟啉/多壁碳纳米管修饰电极的制备及多巴胺的测定   总被引:1,自引:0,他引:1  
利用电化学方法在多壁碳纳米管修饰的玻碳电极表面聚合一层无金属卟啉,制备了卟啉/多壁碳纳米管修饰电极,采用循环伏安法研究多巴胺(DA)在不同修饰电极上的电化学行为,并计算得到了不同修饰电极有效面积Aeff以及DA电化学氧化过程的一些重要参数.实验结果表明,这种双层膜修饰电极具有更为明显的催化效果,微分脉冲伏安结果显示,催化氧化峰电流与DA浓度在5×10-5mo·lL-1~3×10-7mo·lL-1范围内呈良好的线性关系,检出限达6×10-8mo·lL-1(S/N=3).  相似文献   
79.
采用巨正则蒙特卡罗方法,研究了锂掺杂对单壁氮化硼纳米管阵列(SWBNNTA-SingleWalled Boron Nitride Nanotube Array)物理吸附储氢的影响.揭示了锂掺杂是提高SWBNNTA储氢能力的有效手段,并给出了最佳的掺杂方案.计算结果表明,选择最佳的掺杂方案,并合理控制SWBNNTA的结构与尺寸,可使锂掺杂SWBNNTA在常温、中等压强下的物理吸附储氢量达到和超过美国能源部提出的2015年研究目标.  相似文献   
80.
引入平均场方法,计算单根碳管的有效介电常数.然后用On-shell方法计算由碳管组成的二维光子晶体的有效介电常数,与Maxwell-Garnett(MG)方法计算出的结果比较,前者更接近实验数据.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号